

- 1 Reduced-complexity air quality intervention modelling
- 2 over China: development of the InMAPv1.6.1-China and

3 comparison with the CMAQv5.2 model

- Ruili Wu¹, Christopher W. Tessum², Yang Zhang³, Chaopeng Hong⁴, Yixuan Zheng⁵,
 Qiang Zhang¹
- 6 ¹Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System
- 7 Science, Tsinghua University, Beijing 100084, China
- 8 ²Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,
- 9 Urbana, Illinois 61801, United States
- ³Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts
 02115, United States
- ⁴Department of Earth System Science, University of California, Irvine, California 92602, United States
- 13 ⁵Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning,
- 14 Beijing 100012, China
- 15 Correspondence to: Ruili Wu (wurl15@mails.tsinghua.edu.cn)

16 Abstract. This paper presents the first development and evaluation of the reduced-complexity air quality 17 model for China. In this study, a reduced-complexity air quality intervention model over China 18 (InMAPv1.6.1-China, hereafter, InMAP-China) is developed by linking a regional air quality model, a 19 reduced-complexity air quality model, an emission inventory database for China, and a health impact 20 assessment model to rapidly estimate the air quality and health impacts of emission sources in China. 21 The modelling system is applied over mainland China for 2017 under various emission scenarios. A 22 comprehensive model evaluation is conducted by comparison against conventional CMAQ simulations 23 and ground-based observations. We found that InMAP-China satisfactorily predicted total PM2.5 24 concentrations in terms of statistical performance. Compared with the observed PM_{2.5} concentrations, 25 the mean bias (MB), normalized mean bias (NMB), and correlations of the total PM2.5 concentrations are 26 -8.1 µg/m³, -18%, and 0.6, respectively. The statistical performance is considered to be satisfactory for 27 a reduced-complexity air quality model and remains consistent with that evaluated in the United States. 28 The underestimation of total PM2.5 concentrations was mainly caused by its composition, primary PM2.5. 29 In terms of the ability to quantify source contributions of PM2.5 concentrations, InMAP-China presents 30 similar results in comparison with those based on the CMAQ model, the difference is mainly caused by

the different mechanism and the treatment of secondary inorganic aerosols in the two models. Focusing on the health impacts, the annual $PM_{2.5}$ -related premature mortality estimated using InMAP-China in 2017 was 1.92 million, which was 25 ten thousand deaths lower than that estimated based on CMAQ simulations as a result of underestimation of $PM_{2.5}$ concentrations. This work presents a version of the reduced-complexity air quality model over China, provides a powerful tool to rapidly assess the air quality and health impacts associated with control policy, and to quantify the source contribution attributable to many emission sources.

38 1 Introduction

With rapid urbanization and industrialization, fine particulate matter pollution less than 2.5 μm in diameter (PM_{2.5}) has become a major environmental issue in China. High PM_{2.5} concentrations can be observed over eastern China from satellite observations (Van et al., 2010). Moreover, heavy haze events occurring in metropolises attract the attention of citizens and Chinese governments. PM_{2.5} can affect air quality, ecosystems, and climate change and damage human health through short-term or long-term exposure. The Global Burden of Disease study reported that 1.1 million premature deaths were caused by long-term PM_{2.5} exposure over China in 2015 (Cohen et al., 2017).

46 State-of-the-science three-dimensional air quality models (CTMs) have been widely used in China 47 as tools to simulate regional PM25 concentrations, quantify the contributions to total PM25 concentrations 48 resulting from emission sources and assess the benefits associated with control measures (Chang et al.; 49 2019, Li et al., 2015; Zhang et al., 2015; Zhang et al., 2019). The models WRF-CMAQ (Appel et al., 50 2017; Chang et al., 2019), WRF-Chem (Reddington et al., 2019), WRF-CAMx (Li et al., 2015), and 51 GEOS Chem-adjoint (Zhang et al., 2015) were frequently used in previous studies. To conduct a series 52 of simulations for multiple scenarios or quantify the separate contributions attributable to multiple 53 sources, large computational resources and run time are required while utilizing conventional CTMs. To 54 address this challenges and to improve the availability and accessibility of air quality modelling, a 55 number of reduced-complexity models have been developed by the air quality research community. The 56 three representative reduced-complexity air quality models frequently used are the Estimating Air 57 Pollution Social Impacts Using Regression (EASIUR) model (Heo et al., 2016; Heo et al., 2017), the 58 updated Air Pollution Emission Experiments and Policy (APEEP2) model (Muller et al., 2007; Muller 59 et al., 2011) and the intervention for air pollution (InMAP) model (Tessum et al., 2017). A recent study

60 compares three reduced-complexity models, EASIUR, APEEP2, and InMAP, and the results indicate 61 that these three models are consistent in their assessment of the marginal social cost at the county level 62 (Gilmore et al., 2019). Reduced-complexity air quality models are less computationally intensive and 63 easier to use. However, it is not available for China. Therefore, it is essential to develop a reduced-64 complexity air quality model over China to quickly predict PM2.5 concentrations and the associated health 65 impacts of emission sources. 66 The reduced-complexity intervention model for air pollution, InMAP, was developed by Tessum et 67 al. (Tessum et al., 2017) to rapidly assess the air pollution, health, and economic impacts resulting from 68 marginal changes in air pollutant emissions. Compared with conventional air quality models, InMAP has 69 the advantage of time efficient, can predict annual-average PM2.5 concentrations within few hours but 70 with a modest reduction in accuracy compared with CTMs. InMAP reduces the running time by 71 simplifying the physical and chemical process. InMAP has been used to assess marginal health damage 72 of location-specific emission sources (Goodkind et al., 2019), to quantify the health impacts of individual 73 coal-fired power plants in the United States (Thind et al., 2019) and to estimate the health benefits of 74 control policies considering specific locations (Sergi et al., 2020). However, to date, a version of the 75 reduced-complexity air quality intervention model over China is absent. 76 In this work, a reduced-complexity air quality intervention model over China (InMAPv1.6.1-China, 77 hereafter, InMAP-China) is developed on the basis of source code of Intervention Model for Air Pollution 78 model (InMAP) to rapidly predict the air quality and estimate the health impacts of emission sources in 79 China. The modelling system is applied over mainland China for 2017 under various emission scenarios 80 to examine model performance. Comparisons against conventional air quality models and surface 81 observations are performed in this study. The model applicability and limitations are also declared. The paper is organized as follows: Section 2.1 presents the components of InMAP-China includes 82

the interface development between WRF-CMAQ and InMAP to generate parameters of the base atmospheric state, the preprocessing process of emission input data and the exposure-response functions employed in this model. Section 2.2 introduces the evaluation protocol, including the statistical variables adopted and the simulation design in this study. Section 3 presents the evaluation of InMAP-China's predictions of PM_{2.5} air quality and PM_{2.5}-related health impacts in several simulations. Section 4 summarizes the conclusions and limitations of this study.

89 2 Description of InMAPv1.6.1-China model

90 2.1 Model components and configurations

91 The reduced-complexity intervention model for air pollution, InMAP, was developed by Tessum et 92 al. (Tessum et al., 2017) to rapidly assess the air pollution, health, and economic impacts resulting from 93 marginal changes in air pollutant emissions. The model has been widely used in studies (Sergi et al., 94 2020; Thind et al., 2019; Goodkind et al., 2019; Dimanchevi et al., 2019) focusing on PM2.5 pollution 95 and health, economic impacts resulting from emission sources in the United States. In this model, the 96 continuous equation of atmospheric pollutants is solved at an annual scale, and the run time can be 97 reduced. The parameters used to represent physical and chemical processes for simplified simulation are 98 calculated prior to using CTM output data. PM2.5 air quality and PM2.5-related premature mortality are 99 predicted and output in the InMAP model.

100 In this work, a Chinese version of the reduced-complexity air quality intervention model InMAP-101 China is developed for the purpose of rapidly estimating the PM2.5 concentration and associated health 102 impacts of emission sources. Figure 1 shows the model framework. Based on the source code of the 103 InMAP model, three-step development work is conducted to establish InMAP-China. Figure 1 shows 104 the model framework. First, we develop a preprocessed interface to calculate physical and chemical 105 process parameters using the WRF-CMAQ output variables to support the simplified simulation in 106 InMAP-China. Second, air pollutant emission data are preprocessed to an appropriate format for the 107 InMAP-China simulation. Third, the exposure-response function of the GEMM model is employed in 108 InMAP-China and replaces the original default function to assess PM2.5-related health impacts.

- 109 Table 1 presents the basic configurations of InMAP-China. The simulation domain is over East
- 110 Asia and covers mainland China. The spatial resolution is 36 km. Fourteen vertical layers are used in
- 111 InMAP-China, ranging from the surface layer to the top level of the tropospheric layer.

112 2.1.1 Parameter interface development for simplified simulation in InMAP-China

We develop a preprocessed interface to calculate physical and chemical process parameters using WRF-CMAQ output variables for simplified simulation in InMAP-China based on the Environmental Protection Agency's (EPA) work (Baker et al., 2020). The main step of the preprocessed interface includes meteorological and chemical variable extraction and merging, unit conversion, vertical layer mapping, physical and chemical process parameter calculation and average processing. The hourly

- 118 chemical and meteorological variable outputs from the WRF-CMAQ modelling system are converted 119 into annual-average physical and chemical process parameters required for simplified simulation. 120 A NETCDF file containing the three-dimensional annually averaged parameters to characterize 121 atmospheric advection, dispersion, mixing, chemical reaction, and deposition is generated. Table 2 shows 122 the relationship between the annual-average parameters for simplified simulation and the original hourly 123 variables. In InMAP-China, the annual averaged component and the deviation of wind speed to represent 124 advection are calculated using hourly elements. The offset of wind vectors in different directions may 125 result in some uncertainties in this process. The parameters of eddy diffusion and convective transport 126 are precalculated using hourly elements, including temperature, pressure, boundary layer height, etc. The 127 annual wet deposition rate is determined by the rainwater mixing ratio and cloud fractions. The annual 128 dry deposition rate of particles and gaseous pollutants at the surface level is precalculated using friction 129 speed, heat flux, radiation flux and land cover. 130 The simplification of chemical reactions is different among pollutants. For NOx, NH3, and volatile
- organic compound (VOC) precursors, annual averaged gas-particle partitioning is adopted and calculated
 prior to using the output concentrations of species from CMAQ. For SO₂ pollutants, the annual oxidation
 rate of two major conversion pathways for SO₂ is calculated using concentrations of hydroxyl radical
 (HO) and hydrogen peroxide (H₂O₂) in CMAQ, and the conversion is estimated in InMAP-China.
- 135 2.1.2 Prior WRF-CMAQ simulation

136 To generate the meteorological and chemical parameters required by InMAP-China, a one-year 137 WRF-CMAQ simulation is conducted to output hourly meteorological and chemical-related variables in 138 the year 2017. Tables S1 and S2 show the major configurations of the WRF-CMAQ modelling system. 139 The WRF model is driven by the National Centers for Environmental Prediction Final Analysis (NCEP-140 FNL) (https://doi.org/10.5065/D6M043C6) reanalysis data to provide the initial and boundary conditions. 141 The meteorological fields derived from the WRF model is used to drive the CMAQ model (Appel et al., 142 2016) simulations. The air pollutant emissions used here include anthropogenic emissions over China 143 derived from the MEIC model (http://meicmodel.org/), anthropogenic emissions over the region of East 144 Asia outside China derived from the MIX-2010 inventory (Li et al., 2015), and biogenic emissions 145 derived from the MEGANv2.10 model. The CB05 chemical mechanism and the AERO6 aerosol module 146 are employed in the model simulation. 147 Table S3 summarizes the performance statistics of meteorological variables, including surface

148 temperature, relative humidity, and wind speed, in China in 2017, as simulated by the WRF model. The

140

149	hourly observed data of major meteorological variables derived from the National Climate Data Center
150	(NCDC) are utilized here. The results show that the meteorological variables simulated by the WRF
151	model agree well with the surface observations, which is consistent with previous studies (Wu et al.,
152	2019; Zheng et al., 2015; Hong et al., 2017). The model performs well on the predictions of surface
153	temperature, with an MB of -0.7 K, an NMB of -6.1%, and R of 0.9. The predictions of relative humidity
154	at a height of 2 metres are relatively satisfied with an MB of 4.1% and an NMB of 6.1%. The predictions
155	of wind speed at a height of 10 metres are slightly overestimated, with an MB of 0.3 m/s and an NMB
156	of 12.4%, which may be caused by out-of-date USGS land use data employed in the model runs.
157	The SO ₂ , NO ₂ and PM _{2.5} concentrations modelled across the domain agree well with the surface
158	observations in terms of the statistical performance and monthly variations. Table S4 summarizes the
159	performance of the statistics of major air pollutant concentrations. The nationwide annual averaged $\ensuremath{\text{PM}_{2.5}}$
160	concentration simulated in 2017 in China was 42.1 $\mu g/m^3.$ Compared with the observed $PM_{2.5}$ of 45.9
161	$\mu g/m^3$, there are slight underpredictions with an MB of 3.7 $\mu g/m^3$ and NMB of 8.1%. The CMAQ model
162	has moderate underpredictions of the NO_2 concentrations and SO_2 concentrations, which may be related
163	to the uncertainties of emission inputs. For modelled NO_2 concentrations, MB and NMB are -4.6 $\mu\text{g/m}^3$
164	and -13.9%, respectively. For modelled SO_2 concentrations, MB and NMB are -0.8 $\mu\text{g/m}^3\text{and}$ -4.5%,
165	respectively. Figure S3 shows the monthly variation. The variation trend of the observed SO ₂ , NO ₂ , and
166	PM _{2.5} concentrations can basically be reproduced in the CMAQ simulations.

167 2.1.3 Preprocessed emission input data

Additionally, we develop the preprocessed module to generate vector emission input for the InMAP-China simulation. This module can allocate air pollutant emissions vertically and horizontally to supply the missing parameters for the emission file and convert them into shapefile vector format. The emission data are preprocessed by source and altitude.

172 The anthropogenic emissions of five sectors in China in 2017 from the MEIC inventory 173 (http://meicmodel.org/), the anthropogenic emissions over regions outside mainland China in Asia from 174 the MIX-2010 inventory (Li et al., 2015), and the natural emissions estimated using the MEGANv2.10 175 model (Guenther et al., 2012) are employed in this study. Gridded anthropogenic emissions of 0.3 176 degrees for the residential, transportation, and agricultural sectors are preprocessed and input to the 177 surface layer. The gridded air pollutant emissions of the industrial sector and noncoal power plants are 178 preprocessed for allocation to attitudes ranging from 130 metres to 240 metres and 130 metres to 890 179 metres, respectively.

180 The emissions of coal-fired power plants (CPPs) are preprocessed as point sources. The air pollutant 181 emissions and the stack attribution of each unit are provided in the emission file. Because the stack 182 attribution of the power unit is missed in the MEIC inventory, we supplied the information in the 183 preprocessed module based on NEI (National Emission Inventory data) data of power units. For stack 184 height/stack diameter, a linear relationship is first established (see Figure S1), and then, supplementation 185 for these two parameters of Chinese power plants is conducted by using the relationships. The fixed 186 value for the other two variables of stack attribution is set here because the PM_{2.5} concentrations 187 attributable to power plants (CPPs-PM_{2.5}) are less sensitive to the two variables (see Figure S2). The 188 stack gas exit velocity and stack gas exit temperature of the power unit are 6 m/s and 313 K, respectively. 189 The air pollutant emissions over regions outside mainland China in Asia and the natural emissions 190 simulated by MEGANv2.10 are preprocessed and input to the surface layer.

191 2.1.4 Exposure-response function from GEMM

192 In InMAP-China, we employ the exposure-response function from GEMM to estimate PM2.5-related 193 premature mortality, which was developed by Burnett et al. (Burnett et al., 2018). Premature mortality 194 due to noncommunicable diseases (NCDs) and lower respiratory infections (LRIs) was considered in this 195 study. Mortality is determined by the mortality incidence rate, population, and attributable fraction (AF) 196 to certain PM25 concentrations. The national mortality incidence rate and the population data were 197 derived from the GBD2017 study (Institute for Health Metrics and Evaluation). The spatial distribution 198 of the population in 2015 from the Gridded Population of World Version 4 (Doxsey et al., 2015) was 199 employed to allocate the population in 2017.

200 2.2 Evaluation protocol

201 2.2.1 Evaluation method

In this study, the performances of the InMAP-China predictions are evaluated by comparison against CMAQ simulations and surface observations. Model-to-model comparison and model-toobservation comparison have both been used to evaluate the performance of reduced-complexity air quality models in previous studies (Tessum et al., 2017, Gilmore et al., 2019).

The following aspects are considered to make an evaluation. First, we examine the ability of InMAP-China to predict $PM_{2.5}$ concentrations at different emission levels, which will be introduced in Section 3.1. Moreover, the effects of the model spatial resolution on $PM_{2.5}$ concentration predictions are examined and presented in Section 3.1.3. Second, to examine the ability to quantify source contributions

to $\text{PM}_{2.5}$ concentrations, we compare the InMAP-China's predictions of the sectoral contributions							
attributable to power, industry, residential, transportation, and agriculture with those based on the \mbox{CMAQ}							
model, which will be presented in Section 3.2. Third, focusing on the health impacts, the $PM_{2.5}$ -related							
premature mortality predicted by InMAP-China is also compared with mortality estimation based on							
PM _{2.5} exposure derived from CMAQ, which is presented in Section 3.3.							
The statistical parameters used in this study include the correlation coefficient (R), mean bias (MB),							
mean error (ME), normalized mean bias (NMB), normalized mean error (NME), and root mean square							
error (RMSE). The statistical analyses on the performance of InMAP-China are similar to our previous							
evaluation of conventional CTMs (Zheng et al., 2015; Wu et al., 2019).							
The annual averaged observed $\text{PM}_{2.5}$ concentrations in 2017 were calculated using hourly							
concentration data from the China National Environmental Monitoring Center, CNEMC							
(http://www.cnemc.cn/). More than 1400 national monitoring sites for air pollutant concentrations are							
included in the simulation domain.							

223 2.2.2 Experimental design

We design eleven simulations to examine the model ability of InMAP-China in this study. Table 3shows the sequence of simulations.

226 InMAP_TOT represents the baseline simulation with maximum emissions input, in which five 227 sectoral anthropogenic emissions derived from the MEIC inventory, natural emissions derived from the 228 MEGANv2.10 model, and Asian emissions outside mainland China derived from the MIX-2010 229 inventory are combined as emission inputs. Five sectoral and five abatement simulations are also 230 conducted to examine the ability of InMAP-China to predict concentration changes in response to 231 sectoral emissions and abatement emissions. InMAP-China and CMAQ simulations are both conducted. 232 Correspondingly, eleven CMAQ simulations are performed to make a comparison with the InMAP-233 China simulations. Due to limited computational resources, each simulation is conducted for four 234 representative months (January, April, July, and October) in 2017.

251

235 3 Results and Discussion

236 3.1 Model performance of PM_{2.5} concentrations

237 3.1.1 Total PM_{2.5} concentrations

238 Figure 3 shows the performance evaluation of total PM2.5 concentrations in the InMAP_TOT 239 simulations. Compared with the observed annual averaged $PM_{2.5}$ concentrations, the total $PM_{2.5}$ 240 concentrations are moderately underpredicted by InMAP-China with an MB of $-8.1 \,\mu g/m^3$ and an NMB 241 of -18.1%. Compared with the CMAQ predictions, the total PM2.5 concentrations are also underpredicted, 242 with an MB of -5.3 µg/m³ due to the underprediction of primary PM_{2.5}. Consistent air pollutant emissions 243 are employed in the CMAQ and InMAP-China simulations. Therefore, the underpredictions are caused 244 by the different mechanisms in the two models. Basically, InMAP-China reproduces the spatial pattern 245 of total PM25 concentrations simulated by CMAQ. Notably, significant overpredictions of PM25 246 concentrations can be observed over mountain areas across Northern China, and the complex terrain and 247 large emission intensity increase the challenge of predicting PM2.5 concentrations using the reduced-248 complexity air quality model in this region. 249 Figure 4 shows a comparison of PM2.5 compositions. Compared with the CMAQ results, the 250 InMAP-China predictions of $PM_{2.5}$ compositions are satisfactory, with NMBs for SO_4^{2-} , NO_3^{-} , NH_4^{+} , and

NH₄⁺ perform better than those of primary PM_{2.5}. Figure 5 and Figure 6 compare the spatial distribution of PM_{2.5} compositions, and similar overpredictions of PM_{2.5} compositions can be observed in the mountain area in Northern China.

primary PM25 equal to 13%, -8%, -10%, and -23%, respectively. The predictions of SO42, NO3, and

255 The ability of InMAP-China to predict PM2.5 compositions is also examined at various emission 256 levels. Figure 7 compares the concentrations of PM2.5 compositions and the proportions of secondary 257 inorganic aerosols (hereafter, SNA) in total PM2.5 concentrations in different scenarios by two models. 258 In the InMAP TOT scenario, the proportion of SNA is 56%, which is extremely close to the 50% 259 proportion in the WRF-CMAQ simulations. In five emission abatement simulations, the proportion was 260 approximately equal to that in the baseline scenario because the linearly treated chemical reaction 261 relationship of SNA was employed in InMAP-China. However, focusing on the simulations of five 262 sectoral emission scenarios, a significant difference can be observed, which is mainly caused by the 263 difference in chemical treatments in InMAP-China and CMAQ. In this situation, the impacts on PM2.5 264 concentrations are distinct due to the nonlinear emission-concentration process.

265 3.1.2 Marginal change in PM_{2.5} concentrations

266	Figure 8 compares the InMAP-China and CMAQ predictions of population-weighted $PM_{2.5}$
267	concentrations and $PM_{2.5}$ compositions for eleven emission scenarios. Marginal changes in air pollutant
268	concentrations are defined as 1 $\mu g/m^3$ by normalizing the population-weighted air pollutant
269	concentrations of each scenario using the largest value among all scenarios modelled by CMAQ. The
270	InMAP-China reproduces CMAQ predictions on the marginal change in population-weighted $PM_{2.5}$
271	concentrations, with a NMB of -12% and correlations of 0.98, as shown in Figure 8(a). This performance
272	is similar to that predicted by InMAP in the United States (Tessum et al., 2017).
273	Figure 8(b)-(f) compares the predictions of $PM_{2.5}$ compositions. The InMAP-China predictions of
274	$\mathrm{SO_4}^{2-}, \mathrm{NO_3}^{-}, \mathrm{NH_4}^{+}$ and primary $\mathrm{PM}_{2.5}$ agree well with the CMAQ results, but the predictions of secondary
275	organic aerosol (SOA) are the poorest. The marginal changes in NO_3^- and primary $\mathrm{PM}_{2.5}$ concentrations
276	are moderately underpredicted by InMAP-China, with NMB values of -13% and -21%, respectively.
277	Conversely, the marginal change in $\mathrm{SO_4}^2$ concentrations is overpredicted with an NMB of 23%. The
278	marginal change in $\mathrm{NH_4}^+\mathrm{predicted}$ by InMAP-China agrees well with the CMAQ predictions. Because
279	few reaction pathways of SOA are included in the CB05 mechanism in the CMAQ simulations, SOAs
280	are underpredicted in the entire modelling system.
281	The regional performance of the changes in $\ensuremath{\text{PM}_{2.5}}$ and its compositions for eleven emission
282	scenarios is also examined in this study. Figures S4-S7 show the regional results. Four regions, including
283	the Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Fen
284	Wei Plain (FWP), are analysed here (see Figure 2). At the regional level, the CMAQ predicted marginal
285	changes in population-weighted $\rm PM_{2.5}$ concentrations, and its composition can be reproduced by InMAP-
286	China, which is similar to the nationwide performance. However, the marginal change in $\mathrm{SO_4^{2\text{-}}}$
287	concentrations over the BTH is significantly overpredicted by InMAP-China, with an NMB of 135%,
288	which is expected to be improved by optimizing the representation of the annual sulfate oxidation rate

289 in this region.

290 **3.2 Model performance of source contributions**

Figure 9 shows the contribution of each sector to PM_{2.5} concentrations nationwide and at the regional scale, and Table 4 displays the proportion value of sectoral contribution based on two models. The predictions of the source contributions of PM_{2.5} concentrations in InMAP-China are basically reliable compared with those based on the CMAQ model, and the difference can be explained.

The results based on the two models indicate that the industrial and residential sectors are the first and second contributors among the five sectors. The contribution of the electricity sector is comparable when using the two models, while the contributions of transportation and agriculture are moderately different, which is mainly due to the difference in the model mechanism and the treatment of secondary inorganic aerosols in the two models. At the regional scale, the difference in the sectoral contribution caused by the mechanism in the two models is more significant than at the national scale.

301 3.3 Model performance of PM_{2.5}-related premature mortality

302 Figure 10 compares the predictions of PM_{2.5}-related premature mortality based on two models at 303 the provincial level. The PM₂-related premature mortality estimated using InMAP-China was 1.92 304 million people in 2017. Compared with the CMAQ-based estimations, 25 ten thousand deaths are 305 underpredicted by InMAP-China because of underestimation of total PM2.5 concentrations in the baseline 306 simulation. At the provincial level, the PM_{2.5}-related premature mortality in Beijing city, Tianjin city, 307 Hebei province and Shanghai city is slightly overpredicted by InMAP-China, with the relative difference 308 ranging from 4% to 15%. Conversely, for the other majority of provinces, PM_{2.5}-related premature 309 mortality is underpredicted by InMAP-China, with the relative difference ranging from -3% to -44%.

310 4 Conclusions

311 This work develops a reduced-complexity air quality intervention model over China and presents a 312 comprehensive evaluation by comparing CMAQ simulations and surface observations. InMAP-China 313 has the advantage of being time-efficient in conducting air quality predictions and health impact 314 assessments of emission sources in China.

315 InMAP-China performed well for the prediction of PM2.5 concentrations. The model satisfactorily 316 predicts total PM_{2.5} concentrations in the baseline simulation in terms of statistical performance. 317 Compared with the observed PM_{2.5} concentrations, the MB, NMB, and correlations of the total PM_{2.5} 318 concentrations are -8.1 µg/m³, -18%, and 0.6, respectively. The statistical performance is satisfactory for 319 a reduced-complexity air quality model and remains consistent with the performance evaluation in the 320 United States. The underestimation of total PM2.5 mainly comes from the primary PM2.5. Moreover, the 321 spatial pattern of total PM2.5 concentrations can be reproduced in InMAP-China, while an overestimation 322 over the mountain area in Northern China can be observed. The large emission intensity and complex 323 terrain over this region increase the difficulty of modelling concentrations in this area. The predictions

324	of source contributions to $\text{PM}_{2.5}$ concentrations by InMAP-China are comparable with those based on
325	the CMAQ model, and the difference is mainly caused by the different mechanism and the treatment on
326	secondary inorganic aerosols in two models. Focusing on the predictions of health impacts, InMAP-
327	China shows moderate underpredictions of 25 ten thousand people deaths compared with CMAQ-based
328	predictions due to the underestimation of total $PM_{2.5}$ concentrations.
329	Although the modelling system has an acceptable performance, research work is suggested to
330	further improve the model performance. This study is subject to some limitations and uncertainties. In
331	InMAP-China, the annual-average chemical and physical processes parameters are calculated using
332	hourly parameters from WRF-CMAQ. Complicated seasonal and daily variations affecting the formation
333	and transportation of particulate matter are challenging to retain. The intensity of advection of the air
334	mass is supposed to be weakened due to the offset of the wind vector in the averaging process, which
335	was also pointed out in a previous study. Moreover, InMAP-China has difficulty predicting SOA
336	concentrations because reaction pathways for SOA are insufficient in this modelling system.
337	InMAP-China has the advantage of time efficiency and a satisfactory performance in this study;
338	however, this model has a modest reduction in accuracy compared with conventional CTMs; hence, some
339	limitations still exist for model applications. In terms of the applicability of this modelling system, we
340	recommend users to select InMAP-China as a prior tool with the following objectives: quantification of
341	the contribution of multiple emission sources in baseline atmospheric conditions, for instance, the $PM_{2.5}$
342	air quality and health impacts contributed by individual CPPs; and rapid estimation of the general air
343	quality and health benefits attributable to a series of control policies. Instead, if the objective of
344	simulations is to predict the actual situation and pre-estimate the reductions in $PM_{2.5}$ concentrations due
345	to control measures, conventional CTMs are a better choice because the change in atmospheric
346	conditions along with emission change should be taken into account.
347	
348	
349	

355 Code and data availability

356	The source code of the reduced-complexity air quality model, InMAP, is available at
357	https://github.com/spatialmodel/inmap. The source code for the localized version over China
358	(InMAPv1.6.1-China), the data related to this study as well as the user manual are available at
359	https://doi.org/10.5281/zenodo.4686431.

360 Author contributions

- 361 RL. Wu and Q. Zhang designed the research and RL. Wu carried them out. RL. Wu, CW. Tessum and
- 362 Y. Zhang contributed to model development. RL. Wu prepared the manuscript with contributions from363 all co-authors.

364 Competing interests

365 The authors declare no competing interests.

366 Acknowledgements

- 367 This work was supported by the National Natural Science Foundation of China (41921005 and
- 368 41625020). And this work was also funded under Assistance Agreement No. RD835871 awarded by the
- 369 U.S. EPA to Yale University. The views expressed in this manuscript are those of the authors alone and
- 370 do not necessarily reflect the views and policies of the U.S. EPA. The EPA does not endorse any products
- 371 or commercial services mentioned in this publication.

372 References

- 373 A. Xiu, J. E. Pleim. Development of a Land Surface Model. Part I: Application in a Mesoscale
- 374 Meteorological Model. Journal of Applied Meteorology, 40:192-209, 2011.
- 375 Appel, K.W., Napelenok, S.L., Hogrefe, C., Foley, K.M., Pouliot, G.A., Murphy, B., Heath, N., Roselle,
- 376 S., Pleim, J., Bash, J.O., Pye, H.O.T., Mathur, R. Overview and evaluation of the Community Multiscale
- 377 Air Quality (CMAQ) modelling system version 5.2. Air Pollution Modelling and its Application XXV,
- 378 11:63-72. ITM 2016. Springer Proceedings in Complexity. Springer, Cham, doi: 10.1007/978-3-319-
- 379 57645-9_11, 2017.

- 380 Appel, K.W., Napelenok, S.L., Hogrefe, C., Foley, K.M., Pouliot, G.A., Murphy, B., Heath, N., Roselle,
- 381 S., Pleim, J., Bash, J.O., Pye, H.O.T., Mathur, R. Overview and evaluation of the Community Multiscale
- 382 Air Quality (CMAQ) modelling system version 5.2. Air Pollution Modelling and its Application XXV,
- 383 11:63-72. ITM 2016. Springer Proceedings in Complexity. Springer, Cham, doi: 10.1007/978-3-319-
- 384 57645-9_11, 2017.
- 385 Baker, K. R.; Amend, M.; Penn, S.; Bankert, J.; Simon, H.; Chan, E.; Fann, N.; Zawacki, M.; Davidson,
- 386 K.; Roman, H., A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-
- 387 quality modelling tools. Data in Brief, 28, 2020.
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C. A.; Apte, J. S.; Brauer, M.;
- 389 Cohen, A.; Weichenthal, S.; Coggins, J.; Di, Q.; Brunekreef, B.; Frostad, J.; Lim, S. S.; Kan, H. D.;
- 390 Walker, K. D.; Thurston, G. D.; Hayes, R. B.; Lim, C. C.; Turner, M. C.; Jerrett, M.; Krewski, D.; Gapstur,
- 391 S. M.; Diver, W. R.; Ostro, B.; Goldberg, D.; Crouse, D. L.; Martin, R. V.; Peters, P.; Pinault, L.;
- 392 Tjepkema, M.; Donkelaar, A.; Villeneuve, P. J.; Miller, A. B.; Yin, P.; Zhou, M. G.; Wang, L. J.; Janssen,
- 393 N. A. H.; Marra, M.; Atkinson, R. W.; Tsang, H.; Thach, Q.; Cannon, J. B.; Allen, R. T.; Hart, J. E.;
- 394 Laden, F.; Cesaroni, G.; Forastiere, F.; Weinmayr, G.; Jaensch, A.; Nagel, G.; Concin, H.; Spadaro, J.
- 395 V., Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
- 396 Proceedings of the National Academy of Sciences of the United States of America, 115, (38), 9592-9597,
- 397 2018.
- 398 C. J. Walcek, Taylor GR. A Theoretical Method for Computing Vertical Distributions of Acidity and
- 399 Sulfate Production within Cumulus Clouds. J. of the Atmos. Sci, 43:339-55, 1986.
- 400 Chang, X.; Wang, S.; Zhao, B.; Xing, J.; Liu, X.; Wei, L.; Song, Y.; Wu, W.; Cai, S.; Zheng, H.; Ding,
- 401 D.; Zheng, M., Contributions of inter-city and regional transport to PM_{2.5} concentrations in the Beijing-
- 402 Tianjin-Hebei region and its implications on regional joint air pollution control. Science of the Total
- 403 Environment, 660, 1191-1200, 2019.
- 404 Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.; Balakrishnan, K.;
- 405 Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.;
- 406 Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C. A., III; Shin, H.; Straif, K.; Shaddick, G.; Thomas,
- 407 M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C. J. L.; Forouzanfar, M. H., Estimates and

- 408 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data
- 409 from the Global Burden of Diseases Study 2015. Lancet 389, (10082), 1907-1918, 2017.
- 410 Dimanchevi, E. G.; Paltsev, S.; Yuan, M.; Rothenberg, D.; Tessum, C. W.; Marshall, J. D.; Selin, N. E.,
- 411 Health co-benefits of sub-national renewable energy policy in the US. Environmental Research Letters,
- 412 14, (8) ,2019.
- 413 Doxsey-Whitfield E, MacManus K, Adamo S B, Susana B, Pistolesi L, Squires J, BorkovskaOand
- 414 Baptista S R Taking advantage of the improved availability of census data: a first look at the gridded
- 415 population of the world, version 4 Pap.Appl. Geogr. 1 226–34, 2015.
- 416 E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough. Radiative transfer for
- 417 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res,
- 418 102:16663-82, 1997.
- 419 Fountoukis C and Nenes A. ISORROPIA II: A Computationally Efficient Aerosol Thermodynamic
- 420 Equilibrium Model for K⁺, Ca²⁺, Mg²⁺, NH4⁺, Na⁺, SO4²⁻, NO3⁻, Cl⁻, H2O Aerosols, Atmos Chem Phys,
- 421 7, 4639-4659, 2007.
- 422 Gilmore, E. A.; Heo, J.; Muller, N. Z.; Tessum, C. W.; Hill, J. D.; Marshall, J. D.; Adams, P. J., An inter-
- 423 comparison of the social costs of air quality from reduced-complexity models. Environmental Research
 424 Letters, 14, (7), 2019.
- 425 Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017)
- 426 Population Estimates 1950-2017. Seattle, United States: Institute for Health Metrics and Evaluation427 (IHME), 2018.
- 428 Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017)
- 429 Cause-Specific Mortality 1980-2017. Seattle, United States: Institute for Health Metrics and Evaluation430 (IHME), 2018.
- 431 Goodkind AL, Tessum CW, Coggins JS, Hill JD, Marshall JD. Fine-scale damage estimates of particulate
- 432 matter air pollution reveal opportunities for location-specific mitigation of emissions. Proceedings of the
- 433 National Academy of Sciences. Apr 3:201816102. https://doi.org/10.1073/pnas.1816102116, 2019.
- 434 Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.,
- 435 The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and

- 436 updated framework for modelling biogenic emissions. Geoscientific Model Development Discussions, 5,
- 437 (2), 1503-1560, 2012.
- 438 Heo, J.; Adams, P. J.; Gao, H. O., Public health costs accounting of inorganic PM_{2.5} pollution in
- 439 metropolitan areas of the United States using a risk-based source-receptor model. Environment
- 440 International, 106, 119-126, 2017.
- 441 Heo, J.; Adams, P. J.; Gao, H. O., Reduced-form modelling of public health impacts of inorganic PM_{2.5}
- 442 and precursor emissions. Atmospheric Environment, 137, 80-89, 2016.
- 443 Hong, C.; Zhang, Q.; Zhang, Y.; Tang, Y.; Tong, D.; He, K., Multi-year downscaling application of
- 444 two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality
- 445 modelling: model evaluation and aerosol direct effects. Geoscientific Model Development, 10, (6),
- 446 2447-2470, 2017.
- 447 J. E. Pleim. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part
- 448 I: Model Description and Testing. J. Appl. Meteorol. Clim, 46:1383-95, 2007.
- 449 J. S. Chang, R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, et al. A three-
- 450 dimensional Eulerian acid deposition model: Physical concepts and formulation. J Geophys. Res,
- 451 92:14681-700, 1987.
- 452 J. S. Kain. The Kain–Fritsch Convective Parameterization: An Update. J. of Appl. Meteorol. 2004,
- 453 43:170-81.
- 454 Li, M.; Zhang, Q.; Kurokawa, J.-i.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D. G.;
- 455 Carmichael, G. R.; Cheng, Y.; Hong, C.; Huo, H.; Jiang, X.; Kang, S.; Liu, F.; Su, H.; Zheng, B., MIX:
- 456 a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the
- 457 MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17, (2), 935-963, 2017.
- 458 Li, X.; Zhang, Q.; Zhang, Y.; Zheng, B.; Wang, K.; Chen, Y.; Wallington, T. J.; Han, W.; Shen, W.; Zhang,
- 459 X.; He, K., Source contributions of urban PM2.5 in the Beijing-Tianjin-Hebei region: Changes between
- 460 2006 and 2013 and relative impacts of emissions and meteorology. Atmospheric Environment, 123, 229-
- 461 239, 2015.
- 462 Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B., High-resolution inventory of
- 463 technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010.

- 464 Atmospheric Chemistry and Physics, 15, (23), 13299-13317, 2015.
- 465 M..-D. Chou, M. J. Suarez, C.-H. Ho, M. M-H. Yan, K.-T. Lee. Parameterizations for Cloud Overlapping
- 466 and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models.
- 467 J. of Climate, 11:202-14, 1998.
- 468 Muller, N. Z., Mendelsohn, R. Measuring the damages of air pollution in the United States. Journal of
- 469 Environmental Economics and Management, 54(1), 1–14. https://doi.org/10.1016/j.jeem.2006.12.002,
- 470 Muller, N. Z., Mendelsohn, R., & Nordhaus, W. Environmental accounting for pollution in the United
- 471 States economy. American Economic Review, 101(5), 1649-75. DOI:10.1257/aer.101.5.1649, 2011.
- 472 Multi-resolution Emission Inventory of China (http://meicmodel.org/).
- 473 National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of
- 474 Commerce NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999
- 475 Dataset (https://doi.org/10.5065/D6M043C6), 2000.
- 476 Reddington, C. L.; Conibear, L.; Knote, C.; Silver, B.; Li, Y. J.; Chan, C. K.; Arnold, S. R.; Spracklen,
- 477 D. V., Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and
- 478 East Asia. Atmospheric Chemistry and Physics, 19, (18), 11887-11910, 2019.
- 479 Sergi, B. J.; Adams, P. J.; Muller, N. Z.; Robinson, A. L.; Davis, S. J.; Marshall, J. D.; Azevedo, I. L.,
- 480 Optimizing Emissions Reductions from the U.S. Power Sector for Climate and Health Benefits.
- 481 Environmental science & technology, 54, (12), 7513-7523, 2020.
- 482 Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang Wand Powers J A
- 483 description of the Advanced Research WRF Version 3 NCAR technical note (Boulder, CO: National
- 484 Center for Atmospheric Research), 2008.
- 485 Tessum, C. W.; Hill, J. D.; Marshall, J. D., InMAP: A model for air pollution interventions. PLoS One,
- 486 12, (4), e0176131, 2017.
- 487 Thind, M. P. S.; Tessum, C. W.; Azevedo, I. L.; Marshall, J. D., Fine Particulate Air Pollution from
- 488 Electricity Generation in the US: Health Impacts by Race, Income, and Geography. Environmental
- 489 Science & Technology, 53, (23), 14010-14019, 2019.
- 490 United States Environmental Protection Agency. National Emission Inventory data.
- 491 https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data. 2011.

- 492 van Donkelaar, A.; Martin, R. V.; Brauer, M.; Hsu, N. C.; Kahn, R. A.; Levy, R. C.; Lyapustin, A.; Sayer,
- 493 A. M.; Winker, D. M., Global Estimates of Fine Particulate Matter using a Combined Geophysical-
- 494 Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science &
- 495 Technology, 50, (7), 3762-3772, 2016.
- 496 Whitten G Z, Heo G, Kimura Y, et al. A new condensed toluene mechanism for Carbon Bond CB05-TU.
- 497 Atmos. Environ, 44(40SI):5346-5355, 2010.
- 498 Wu, R.; Liu, F.; Tong, D.; Zheng, Y.; Lei, Y.; Hong, C.; Li, M.; Liu, J.; Zheng, B.; Bo, Y.; Chen, X.; Li,
- 499 X.; Zhang, Q., Air quality and health benefits of China's emission control policies on coal-fired power
- 500 plants during 2005–2020. Environmental Research Letters, 14, (9), 094016, 2019.
- 501 Zhang, L.; Liu, L. C.; Zhao, Y. H.; Gong, S. L.; Zhang, X. Y.; Henze, D. K.; Capps, S. L.; Fu, T. M.;
- 502 Zhang, Q.; Wang, Y. X., Source attribution of particulate matter pollution over North China with the
- adjoint method. Environmental Research Letters, 10, (8), 2015.
- 504 Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; Ding,
- 505 Y.; Lei, Y.; Li, J.; Wang, Z.; Zhang, X.; Wang, Y.; Cheng, J.; Liu, Y.; Shi, Q.; Yan, L.; Geng, G.; Hong,
- 506 C.; Li, M.; Liu, F.; Zheng, B.; Cao, J.; Ding, A.; Gao, J.; Fu, Q.; Huo, J.; Liu, B.; Liu, Z.; Yang, F.; He,
- 507 K.; Hao, J., Drivers of improved PM_{2.5} air quality in China from 2013 to 2017. Proceedings of the
- 508 National Academy of Sciences of the United States of America, 116, (49), 24463-24469, 2019.
- 509 Zheng, B.; Zhang, Q.; Zhang, Y.; He, K. B.; Wang, K.; Zheng, G. J.; Duan, F. K.; Ma, Y. L.; Kimoto, T.,
- 510 Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol
- 511 formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics,
- 512 15, (4), 2031-2049, 2015.
- 513
- 514
- 515
- 516
- 517
- 518
- 519

520 Table 1. Model configurations in InMAP-China.

Category		Parameters	Configurations			
		Research area and period	China, 2017			
		Spatial resolution	36 km × 36 km			
		Vertical layers	14 layers			
	Basic	Run type	Steady run			
		Variable grid	Static grid			
		Projection	Lambert			
		Grid numbers	305816			
		Meteorological and chemical	Calculated using variables from WRFv3.8-			
		parameters	CMAQv5.2			
	Input	Anthropogenic emissions	MEIC, MIX, MEGAN			
		Population data	GPW 2015 and GBD 2017			
		Baseline mortality rate	GBD 2017			
	Output	Air pollutants	PM _{2.5} and its composition concentrations			
		Mortality	PM _{2.5} -related premature mortality			
521						
522						
523						
524						
525						
526						
527						
528						
529						

530 Table 2 The relationship between parameters for simplified simulation and original variables.

WRF-		InMAP-China's			
CMAQ's		Parameters			
Variables	Descriptions	Descriptions			
		UAvg, UDeviation			
		VAvg, VDeviation	Advection and mixing		
U, V, W	Wind fields	WAvg, WDeviation	coefficients		
	Base state of geopotential and	Dz			
PH, PHB	perturbation geopotential		Layer heights		
		M2d, M2u, Kxxyy,	, ,		
PBLH	Planetary boundary layer height	Kzz	Mixing coefficients		
		SO ₂ Oxidation,	Chemical reaction		
Т	Potential Temperature	PlumeHeight	rates and plume rise		
-	Base state pressure plus perturbation		Chemical reaction		
P, PB	pressure		rates and plume rise		
		ParticleWetdep,	•		
QRAIN	Mixing ratio of rain	GasWetdep	Wet deposition		
		SO ₂ Oxidation	Aqueous-phase		
			chemical reaction		
QCLOUD	Cloud mixing ratio		rates		
	Fraction of grid cell covered by	ParticleWetdep,			
CLDFRA	clouds	GasWetdep	Wet deposition		
SWDOW	Downward shortwave and longwave	GasDrydep,			
N,GLW	radiative flux at ground level	ParticleWetdep	Dry deposition		
		M2d, M2u, Kxxyy,	Mixing and dry		
HFX	Surface heat flux	Kzz, Drydep	deposition		
			Mixing and dry		
UST	Friction velocity		deposition		
LU_INDE	T and use time	M2d, M2u, Kxxyy,	Missing		
Х	Land use type	KZZ	Mixing and convert		
			between mixing ratio		
			and mass		
DENS	Inverse air density		concentration		
Anthropogenic VOCs that are SOA		aOrgPartitioning	VOCs/SOA		
aVOC	precursors		partitioning		
aSOA	Anthropogenic SOA		1 0		
	Hydroxyl radical and hydrogen	SO ₂ Oxidation			
OH, H_2O_2	peroxide concentrations		Oxidation rates		
pNO	ANO ₃ I, ANO ₃ J	NOPartitioning			

				NO _x partitioning	/pNO ₃
	gNO nNH	NO and NO_2	NHPartitioning		
	pini	Amiii4i, Amii4j	Nin artitoning	NH₃/pNH₄	
	gNH	NH ₃		partitioning	
531					
532					
533					
534					
535					
536					
537					
538					
539					
540					
541					
542					
543					
544					
545					
546					
547					
548					
549					
550					
551					
552					
553					
554					

555 Table 3 Simulation experiments conducted using InMAP-China.

Class	Simulations	Emission input Physical and chemical
		parameter input
Sec1	InMAP_POW	Power plants emissions
Sec2	InMAP_INDUS	Industrial emissions
Sec3	InMAP_TRANS	Transportation emissions
Sec4	InMAP_RESI	Residential emissions
Sec5	InMAP_AGRI	Agricultural emissions
BASE	InMAP_TOT	Five sectoral anthropogenic emissions
		and natural emissions
Aba1	InMAP_RE10	Reduce the air pollutants emissions by
		10% based on InMAP _TOT Converted using WRF-
		emissions CMAO simulation data
Aba2	InMAP_RE30	Reduce the air pollutants emissions by in the year of 2017;
		30% based on InMAP _TOT Remain the same in all
		emissions simulations.
Aba3	InMAP_RE50	Reduce the air pollutants emissions by
		50% based on InMAP _101
.1 .		
Aba4	InMAP_RE/0	Reduce the air pollutants emissions by
		70% based on InMAP _101
A ba5	InMAD DEOD	Paduce the air pollutants emissions by
AUds	IIIVIAF_KE90	90% based on $InMAP$ TOT
		emissions
		Childshout

565 Table 4 Comparison of the proportions of sectoral contributions to PM_{2.5} concentrations using InMAP-

566 China and CMAQ.

	Nat	ional	В	TH	Y	RD	PI	RD	FW	/PY
		InMA								
	CMA	P-								
Sector	Q	China								
							10.4			
Power	6.9%	8.1%	6.2%	9.4%	7.4%	8.6%	%	8.2%	7.0%	10.0%
	30.8		30.2		33.3		37.5		27.7	
Industry	%	35.0%	%	38.2%	%	39.1%	%	35.4%	%	31.9%
	25.9		24.7		17.9		19.5		30.0	
Residential	%	28.1%	%	28.2%	%	20.8%	%	28.4%	%	33.8%
Transportat	14.0		13.4		15.7		17.1		13.2	
ion	%	17.3%	%	15.6%	%	21.2%	%	17.5%	%	15.0%
	22.5		25.5		25.7		15.4		22.0	
Agriculture	%	11.5%	%	10.4%	%	12.4%	%	11.6%	%	9.4%

- 0,0

InMAP-China model

- 581 Figure 1 Model framework of InMAPv1.6.1-China.

Figure 2 Four key regions defined in this study, including the Beijing-Tianjin-Hebei region, Yangtze River Delta region, Pearl River Delta region and Fen Wei Plain region.

and WRF-CMAQ. Panels (a) and (c) display the spatial patterns of total $PM_{2.5}$ concentrations predicted by InMAP-China and WRF-CMAQ, respectively. Panel (d) presents the difference in the spatial distribution of the total $PM_{2.5}$ concentrations predicted by the two models. Panel (b) shows the statistical metrics between the simulated and observed $PM_{2.5}$. The observed total $PM_{2.5}$ concentrations are marked as circles in panel (a) and panel (c). In panel (d), the circle shows the difference between the $PM_{2.5}$ simulated by InMAP-China and the observed $PM_{2.5}$. The same colorbar is utilized in the contour and the marked circle.

615

616 Figure 4 Scatter plot comparing the PM_{2.5} composition concentration modelled by the InMAP-China and

617 WRF-CMAQ models. Panels (a), (b), (c) and (d) display sulfate, nitrate, ammonium, and primary PM_{2.5},

⁶¹⁸ respectively. The statistical metrics are labelled in the lower right corner in each panel.

Panels (a), (b), (c), and (d) present the sulfate, nitrate, ammonium, and primary PM_{2.5}, respectively, simulated by
InMAP-China in the InMAP-TOT scenario. Panels (e), (f), (g), and (h) present the results modelled by WRF-CMAQ.

624 Figure 6 The difference in the spatial pattern of PM_{2.5} compositions between InMAP-China and WRF-CMAQ.

- 625 Panels (a), (b), (c), and (d) display sulfate, nitrate, ammonium, and primary PM_{2.5}, respectively.
- 626

- 627
- 628
- 629
- 630

632 Figure 7 Comparison of PM_{2.5} component concentrations and SNA contributions in these eleven simulations.

- 633 (a) and (c) show the modelled PM_{2.5} compositions. Panel (a) presents the results of sectoral emission scenarios, and
- 634 panel (c) presents the results of the baseline and emission abatement scenarios. Panels (b) and (d) present the SNA
- 635 contribution (%) for each scenario.

637 Figure 8 Marginal change in nationwide annual average population-weighted PM_{2.5} concentration and its

638 composition as modelled by InMAP-China and WRF-CMAQ for eleven emissions scenarios. The population-

639 weighted pollutant concentration for each scenario is normalized using the largest value among all scenarios

640 modelled by CMAQ. The eleven dots represent the eleven scenarios, and the statistical metrics are labelled in the

- 641 lower right corner for each panel.
- 642
- 643
- 644

Figure 9 Comparison of source contributions to population-weighted PM_{2.5} concentrations estimated by the

- two models.

660 Figure 10 Comparison of PM_{2.5}-related premature mortality based on two models. (a) InMAP-China-based;

- 661 (b) CMAQ-based; and (c) difference between the two model